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The evolution of a low-amplitude localized disturbance in a laminar boundary layer 
is considered. Linear inviscid theory illustrates that  the disturbance may be divided 
into two parts: a dispersive wave part, represented by solutions to the Rayleigh 
equation which travel at their characteristic speeds, and a transient or advective 
part travelling a t  the local mean velocity. For a three-dimensional initial disturbance, 
calculations based on linear inviscid theory indicate that the transient portion of the 
disturbance does not decay and has the form of an inclined shear layer which 
elongates as the disturbance propagates downstream. The amplitude of the transient 
part exceeds by far that  of the wave part of the disturbance. Experimental results 
are presented for a disturbance created by the impulsive motion of a small membrane 
flush-mounted at the wall. For small amplitudes, the initial evolution of the 
disturbance is found to  be in good qualitative agreement with the inviscid 
calculations, showing the rapid formation of an inclined shear layer. Further 
downstream, the transient portion of the disturbance decays owing to viscous effects, 
leaving a linearly unstable dispersive wave packet. The evolutions of equal and 
opposite disturbances are compared and it is shown that, despite a weak nonlinearity 
that develops, the resultant wave packets are equal in structure but of opposite 
phase. 

1. Introduction 
The breakdown of a laminar boundary layer to a turbulent flow has been an 

intensely studied subject during the past century. Much of the research has 
concentrated on the evolution of two-dimensional Tollmien-Schlichting waves whose 
growth is initially governed by the Orr-Sommerfeld equation. Above a critical 
Reynolds number, these waves grow and after a short time they reach finite 
amplitudes and are subject to nonlinear effects and various types of three- 
dimensional secondary instabilities. This route to transition has been well 
documented both in experiment and in theory (see, for example, Klebanoff, Tidstrom 
& Sargent 1962; Kovasznay, Komoda & Vasudeva 1962; Craik 1971 ; Herbert 1984). 

While it is a natural starting point for a stability analysis, this approach has some 
limitations since it is not a very accurate approximation of what one might expect 
in a variety of physical situations. A naturally occurring flow is unlikely to 
experience two-dimensional uniform disturbances, but might be subjected to 
isolated, impulsive three-dimensional disturbances. On an aircraft wing, for example, 
such disturbances might originate from an imperfection on the wing surface, or from 
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localized upstream irregularities, acoustic sources, etc. For this reason, it would seem 
appropriate to extend the two-dimensional analysis to three-dimensional, impulsive 
disturbances. In  addition to this, the growth rates predicted by two-dimensional 
linear theory are very small, and a linear wave must travel a considerable distance 
before it reaches sufficient amplitudes for nonlinear effects to become important. In 
contrast, we shall show that localized disturbances can exhibit very rapid growth 
rates, even by linear mechanisms, entirely due to their initial three-dimensional 
nature. 

There are several features that become apparent when one considers a single 
disturbance localized in both space and time. Orr (1907) discussed the initial value 
problem in an inviscid flow and pointed out that  in addition to  the discrete spectrum 
whose modes are eigensolutions to the Rayleigh equation, a continuous spectrum of 
modes must also be considered in order to account for any general initial disturbance. 
The continuous spectrum is a result of the exclusion of viscosity in the critical layer 
where the wave speed matches the local mean velocity. In  a viscous flow, however, 
this singularity is no longer present and for bounded flows, such as plane Poiseuille 
flow, the discrete modes form a complete system (cf. DiPrima & Habetler 1969). 
However, for unbounded domains such as the flat plate boundary layer, Gustavsson 
(1978) showed that a ‘viscous’ continuous spectrum exists and is associated with the 
infinite (or semi-infinite) domain. The viscous continuous spectrum was also derived 
and studied by Grosch & Salwen (1978) who calculated the continuum eigenfunctions 
for both the Blasius boundary layer and the plane jet. The relationship between the 
spectra of the inviscid and viscous problems for the boundary layer has not been 
rigorously established, although studies (Lin 1955; Mack 1976; Antar & Benek 1978; 
Gustavsson 1978) suggest that as the Reynolds number increases, one Orr- 
Sommerfeld mode approaches the inviscid Rayleigh mode while the higher modes 
tend towards a neutrally stable inviscid continuum. In the following discussion, care 
must be taken not to confuse the inviscid continuous spectrum with the viscous 
continuous spectrum. 

Case (1960) outlined the solution for a general two-dimensional inviscid parallel 
flow, and he distinguished between the discrete modes derived from the conventional 
normal mode analysis and those modes associated with the inviscid continuous 
spectrum. His asymptotic analysis for the continuous modes at large times indicated 
that they decay as l / t .  Gustavsson extended this work to three-dimensional 
disturbances in a piecewise linear boundary layer and found that the vertical 
velocity, v, could be represented by a dispersive part associated with the solution to 
the Rayleigh equation and also a part resulting from the inviscid continuous 
spectrum which he termed the convected part because it travels a t  the local mean 
velocity of the flow. For the vertical velocity component, Gustavsson found that, for 
two- and three-dimensional disturbances, both of these parts decayed as l / t2  for fixed 
values of x and t, and as l / t  in a coordinate system moving with the disturbance. 

For a two-dimensional flow, the streamwise velocity is directly related to the 
vertical velocity through continuity, and so the results for v also apply to the 
streamwise disturbance velocities. However, for an initial disturbance with a 
spanwise structure, Gustavsson confirmed Landahl’s (1975) result that the 
streamwise component of velocity included a term which did not vanish a t  large 
times. This permanent scar, as Landahl has termed it, is an advective term (i.e. it 
travels a t  the local mean velocity) and is solely a result of the three-dimensional 
nature of the initial disturbance. Landahl (1984) further examined this effect in 
which the integrated effect of the vertical perturbation velocity displaces fluid 
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particles in the vertical direction. If there is a mean shear, this ‘liftup’ creates a 
horizontal disturbance velocity which will not, in general, disappear for long times. 
Landahl (1980) also showed that any general three-dimensional disturbance, subject 
to some constraints, gives rise to an algebraic instability in which the energy of the 
disturbance will grow a t  least as fast as linearly in time. This behaviour is in strict 
contrast to  the two-dimensional theory which predicts that the transient modes 
decay. 

Gustavsson’s (1978) approach was followed by Henningson (1988) who examined 
the initial-value problem for a piecewise linear plane Poiseuille flow. Henningson 
solved the initial-value problem numerically and computed the flow field for a 
specific initial disturbance. His results also showed that the transient modes 
dominate over the dispersive modes after a short time, forming an internal shear 
layer which intensifies as the disturbance evolves. 

By examining the evolution of such localized disturbances in a laminar boundary 
layer, we are extending the analysis of Henningson (1988) to the flat-plate geometry. 
We first consider the numerical solution of the linear inviscid initial-value problem 
for the flat-plate boundary layer. Although this approximation is an extreme 
simplification, it is useful since i t  clearly shows the distinction between the wave and 
transient parts of the localized disturbance. The approximation is valid for moderate 
times since the mechanisms that we are interested in, namely the liftup effect and the 
role of the transient part of the disturbance, are governed by linear inviscid 
mechanisms which act over short times. As the results of $2 show, the three- 
dimensional transient effects dominate the evolution of the initial disturbance while 
the wave portion of the disturbance, although present, does not significantly 
contribute to the structure of the disturbance. 

In  $3, we present some results from experimental measurements of the evolution 
of an artificially triggered localized disturbance in a laminar boundary layer at 
Resr = 950. The experimental conditions are such that the measurements and the 
linear theory may be compared, and considerable care was taken so that the initial 
disturbance produced in the experiments and the initial conditions used in the linear 
calculations were of similar structure and scale, and that the amplitude of the initial 
disturbance generated in the wind tunnel was small enough that linear mechanisms 
dominated the disturbance’s evolution. Although the results of the theory do 
compare well in many respects with those of the experiment, there are important 
differences between the two, especially in the long-time behaviour of the disturbance. 
These issues will be addressed more fully in $3 in which we show that the effect of 
viscosity on a ‘weak’ initial perturbation is to  cause the eventual decay of the 
transient part of the disturbance (the inclined shear layer), leaving only a dispersive 
wave packet which grows slowly as it travels downstream. For higher-amplitude 
initial disturbances, the transient does not decay and nonlinear effects lead to the 
direct breakdown of the disturbance to a turbulent spot, bypassing the wave packet 
stage. These ‘ strong ’ disturbances are considered in an accompanying paper (Breuer 
& Landahl 1990). 

2. Linear theory 
2.1. Derivation of equations 

The derivation of the equations for the linear, inviscid initial-value problem is 
straightforward and our approach follows previous discussions of the problem (e.g. 
Case 1960; Drazin &, Reid 1981; Gustavsson 1978; Henningson 1988). Although the 
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analysis is not new and closely follows that due to Henningson, we present it here for 
completeness and convenience. In  this analysis, the flow is assumed to  be inviscid and 
the mean flow is taken to be two-dimensional and parallel, ignoring the effects of the 
downstream growth of the boundary layer. This assumption is valid for moderate 
times of evolution since the boundary-layer thickness increases with the square root 
of downstream distance and for the cases investigated here (xo = 0.76 m, R,, = 1000 
in the experimental results reported in $3) the boundary-layer thickens only 8 Yo over 
a distance of 50S*. 

The linearized, inviscid, three-dimensional equations of motion are : 

Ut 4- UU, + u'v = -pz ,  (1) 

v,+ uv, = - p y ,  (2) 

Wt i- uw, = -pz,  (3) 

u,+vy+w, = o .  (4) 

Here, x represents the streamwise direction, y the direction normal to the wall and 
z the spanwise direction. u, v, w and p represent the three perturbation velocities (in 
the streamwise, vertical and spanwise directions respectively) and the perturbation 
pressure. U(y) is the mean flow and a prime denotes a derivative with respect to the 
vertical direction y. After taking the Fourier transform in the x- and z-directions, we 
can derive an equation for the transformed pressure, 

where a tilde represents a transformed quantity. a is the streamwise wavenumber, p 
is the spanwise wavenumber and k2 = a2+p2. After taking the y-derivative of this 
and substituting into the vertical momentum equation, we get the familiar Rayleigh 
equation for the vertical velocity v", 

The equation may be solved, subject to the usual boundary conditions, namely that 
v vanish a t  the wall and decay exponentially in the free stream, v K e-lCy. As was 
previously mentioned, the general solution to the Rayleigh equation includes both a 
dispersive term, deriving from the eigenmodes of the equation, and an advective or 
'transient ' term resulting from the inviscid continuous spectrum of the Rayleigh 
equation. Unlike the inviscid eigenmodes for the Blasius profile which are damped, 
the transient portion of the disturbance is neutrally stable ( c  must be real for U(y)- 
c = 0). Gustavsson (1978) has also shown that the transient portion of v travels at the 
local mean velocity (rather than a t  the dispersive wave speeds associated with the 
normal modes) and decays as l / t2 ,  both for two- and three-dimensional disturbances. 

One can also obtain equations for the horizontal velocity components : 
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Following Henningson (1988), we can simplify these equations by rotating the 
horizontal axes so that they are aligned with the wave vector defined by a and /?. The 
transformation is defined as 

(9) 
- 1  
u1 = -(a.ii+/?G), k 

1 
k 

8, = -(/?il-a6), 

in which .ii, is the velocity component perpendicular to the wave front and 6, is the 
component parallel to the wave front. This transformation also serves to separate the 
two- and three-dimensional effects since 12, is the component of velocity driven via 
continuity, while ik6, is the vertical vorticity. Applying this transformation to (7)  
and (8), we obtain 

($+iau)il, = i($+iau)fiy, 

These equations can be integrated directly using appropriate initial conditions 
(denoted by a zero subscript) yielding : 

- 1 -  u1 = -vy, k 

The original velocity components can be retrieved by solving (9) and (10) : 

1 
.ii = -(ail, k +/?8,), 

(16) 
1 
ii 

fi = - (/?GI - "6,). 

The equations for GI and G,, (13) and (14), clearly illustrate the additional term 
that the three-dimensionality introduces in the evolution of a disturbance. The 
expression for .iil is simply a statement of continuity in the plane of the wavefront 
and this component of velocity is determined directly from the solution to the 
Rayleigh equation. Since the vertical velocity decays, so must this portion of the 
disturbance. The vertical vorticity, proportional to G,, has a markedly different 
character. The first term represents the advection of the initial vertical vorticity field 
at the local mean velocity. The second term in the expression for fi,, which depends 
on /?, the mean shear and the integrated effect of the vertical velocity, is the so-called 
' liftup ' term since it represents the generation of horizontal velocity perturbations by 
the lifting-up of fluid elements in the presence of the mean shear. In contrast to the 
behaviour of ill, one can show that this term does not decay (Landahl 1975; 
Gustavsson 1978) and gives rise to large-amplitude, growing, perturbations in the 
horizontal velocity components despite the fact that v decays and that the Rayleigh 
equation only admits solutions which are, at best, neutrally stable. Landahl (1980) 
has also shown that if 

co 

v,dx =k 0 (17) s, 
19-2 
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(that is, if the initial disturbance contains energy a t  a = 0) then the disturbance 
energy grows a t  least as fast as linearly in time owing to the elongation of the 
disturbance as it travels downstream. The liftup concept is somewhat analogous to 
Prandtl's mixing-length hypothesis for the generation of Reynolds stresses in a 
turbulent shear flow. However, that idea does not derive from any three-dimensional 
arguments, whereas the liftup term described here is solely due to three-dimensional 
effects. One should note that for a more compact spanwise structure (i.e. for larger 
values of p) and for a stronger mean shear this effect will become more pronounced. 

In order to fully solve (6), (1 1) and (12) either some simplifying assumptions must 
be made about the mean profile or the initial conditions, or one must resort to 
numerical methods of solution. Both Gustavsson (1978) and Henningson (1988) 
assumed piecewise linear profiles for the mean velocity profiles in a boundary layer 
and a plane Poiseuille flow respectively, and with that simplification they were able 
to integrate the equations in closed form. The strength of this approach is that the 
different effects present in the solution are readily seen in the analytical solution, but 
the treatment of the mean profile by a series of linear segments does introduce some 
spurious behaviour in the solution, especially in the dispersive part, which is quite 
sensitive to the mean profile curvature, which has now been concentrated into a 
series of delta functions located a t  the profile's break points. Henningson's results 
indicate that while the wave speed for the symmetric mode was quite well 
represented by a piecewise approximation of the plane Poiseuille profile, the 
antisymmetric mode was in considerable error. Only by considering the complete 
profile can the dispersive behaviour be accurately treated and so for the present work 
the complete Blasius profile was used, and the equations were integrated directly 
using a finite-difference technique described in the following subsection. 

2.2, Numerical method 

The Rayleigh equation (6) was solved by dividing it into two equations: 

This equation was discretized into J points in the normal direction, and second-order 
finite differences were used to evaluate the vertical derivatives. A Crank-Nicolson 
scheme was used to march forward in time, ensuring stability. The resulting finite- 
difference equations obtained are 

V26T+l-V2fi? = ~ i a A t [ ~ ( ~ + 1 + f i ~ ) - U , ( V z ~ + 1 + V 2 f i ~ ) ] ,  (20) 

where the superscript refers to the current time step and the subscript refers to the 
vertical level. This system of equations may be written in matrix form for the vector 
I" which represents the complete vertical disturbance velocity a t  time step n : G?,j = 
1 . . . J .  Writing the equations in this form and after some simple matrix operations 
we obtain: 

(22) (I+ iR) DP+l = (/- iR) DI" + iS(ijn+l + I") 
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where R and S are diagonal matrices associated with the mean profile : 

R = iiaAtUj/ 

S = i i a A t q l .  

D is the (tri-diagonal) matrix associated with the Laplacian derivative in the normal 
direction (21) and I is the identity matrix. After some further simple manipulations, 
we arrive a t  an equation for advancing the vertical disturbance velocity in time: 

(D +i(RD-S))-'(D-i(RD-S)) E n .  (25)  
En+l = 

It should be noted that for fixed a, /3 and At, all of these matrices are constant and 
need to  be evaluated and combined only once, a t  t = 0. In  order to calculate the 
disturbance velocity at any subsequent time we need only apply the resultant matrix 
iteratively to the an array. A variable spacing in the y-direction may be incorporated 
in the D-matrix, allowing for additional resolution near the wall. Since the matrices 
are all tri-diagonal, this allows for very fast manipulation and inversion during the 
computational cycle. 

The equation for the array Cl, proportional to  the vertical vorticity G1, (12), can 
also be written in matrix form: 

(26) 

where the matrix R is as defined in (23) and T is another constant diagonal matrix : 

(I+ iR) C:+' = (/-iR) a:- T(P+l+  f i n )  

This equation may be integrated at the same time as the Rayleigh equation (25)  
utilizing the current values for En and E a + l .  

Since the resultant velocity field must be a real quantity, each velocity component 
must have symmetry across the complex plane : G(a ,  /3) = G*( -a, -/3), where a star 
denotes the complex conjugate (similarly for 6 and G). Thus, only positive values of 
a need to be considered. For the results presented here, the disturbance was assumed 
to be symmetric about z = 0, and therefore the equations were solved using only 
positive values of /3. 

2.3. Initial conditions 

The initial disturbance was chosen so as to be localized, to satisfy continuity, and to 
be a good approximation to the initial disturbance produced in the experiments 
described in $3  in which a flush-mounted membrane was impulsively moved up and 
then down, generating a localized vertical motion. In  order to simulate this motion, 
the initial conditions used (shown in figure 1 )  had the form of a pair of counter- 
rotating streamwise vortices. This disturbance, identical to the one used by Russell 
& Landahl (1984) and similar to that used by Henningson (1988), is derived from a 
two-dimensional stream function : 

(29) where y = q q 3  e-Zz-g2-z2 

and Z,g, %are the normal Cartesian coordinates scaled by some characteristic lengths 
l,, 1, and I,: 

z=x/ l , ;  g=y/l,; . % = x / l z .  (30) 
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FIGURE 1. Schematic of the initial perturbation used in the numerical studies to simulate the 
membrane motion used in the experiment. The perturbation represents two pairs of counter- 
rotating streamwise vortices. 

0 20 40 60 80 

x/s* 

FIGURE 2. Linear initial-value problem. Contours of vertical velocity in the (2, y)-plane at z = 0. 
Contour spacing : 0.2 of the maximum initial v-perturbation. In this and subsequent similar figures, 
solid lines represent positive contours, dotted lines represent negative contours. 

For the present results, the scaling lengths used were: 1, = 56*, 1, = 1.26*, and 1, = 
68*. These were chosen so as to best approximate the scale of the disturbance 
produced in the experiments described in $3. At t = 0 the centre of the disturbance 
is located a t  x = 0,  z = 0. 

2.4. Results and discussion 
The system described by (25) and (26) was solved numerically using standard 
routines for tri-diagonal matrices. The calculation used 64 modes in a and 32 modes 
in p. The computational domain was a box, 2008* in the streamwise direction and 
506* in the spanwise direction. The vertical direction was discretized into 41 equally 
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FIGURE 3. Linear initial-value problem. Contours of vertical velocity in the (2, %)-plane at 
y/S* = 1. Contour spacing: 0.2 of the maximum initial v-perturbation. 

spaced points from y/S* = 0 to 6. For each combination of a and B, the equations 
were integrated from t = 0 to the desired time, using the analytic Fourier transform 
of the above-described initial perturbation as the initial condition. Fast Fourier 
transforms were used to convert the final results back to physical space. 

The vertical component of velocity is shown in figures 2 and 3, which show the 
evolution of v in the (2, y)-plane at z = 0 and in the (x,z)-plane at  y/6* = 1 
respectively. In these figures, and for all subsequent results, the axes are scaled by 
the displacement thickness, a*, and the flow is from left to right. The edge of the 
boundary layer is located at  approximately 36*. The w-component is only dependent 
on the solution to the Rayleigh equation (6) and it illustrates both the transient and 
the dispersive characters of the solution. In figure 2, the overall coherence of the v- 
component through the boundary layer, and the apparent exponential decay of the 
perturbations outside the boundary layer, reflect the familiar behaviour of the wave 
modes that are usually considered in stability calculations. The only visible sign of 
the transient modes is the patch of low-speed fluid that pulls ahead of the 
disturbance, travelling high in the boundary layer and at  speeds comparable with the 
free-stream velocity. With the exception of the exponential decay in the free stream, 
the structure of v at  t = 25 strongly resembles that of the initial conditions at  t = 0. 
This is also indicated in figure 3, although at later times the decay of the disturbance 
and its increasing wave-packet-like character become evident as it travels 
downstream. 

Figure 4 shows the streamwise perturbation velocity, plotted on the centreline in 
the (x, y)-plane, and we immediately see the difference between the u- and the w- 
components due to the vertical vorticity term. Although there is no u-perturbation 
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initially, a strong streamwise perturbation velocity quickly develops, forming a low- 
speed region immediately followed by a high-speed region of fluid. As the disturbance 
travels downstream, the whole structure is tilted over and stretched so that an 
internal shear layer forms which intensifies as the disturbance evolves. The structure 
of the disturbance illustrates the dominant nature of the liftup effect that  is unique 
to three-dimensional disturbances. The form of the initial vertical velocity pushes up 
low-speed fluid at the front of the disturbance and pulls down high-speed fluid in the 
rear through the mechanism for generation of vertical vorticity via the liftup term. 
This initial vertical motion creates the observed streamwise perturbations. Because 
the transient part of the disturbance travels a t  the local mean velocity, the upper 
part of the disturbance advects faster than the part closer to the wall, resulting in the 
tilting of the shear layer, the stretching of the structure in the streamwise direction 
and, consequently, the intensification of the shear layer as time advances. In contrast 
to the character of v, the u-perturbations are confined to the boundary-layer region 
and do not extend beyond the region of mean shear. This is understandable, knowing 
that the liftup term (14) is only non-zero when there is a mean shear. Since there is 
no viscosity to limit the shear-layer thickness by diffusion of the local vorticity, the 
shear layer continues to intensify with increasing time. 

Although this is an inviscid calculation in which free modes are damped and the 
continuum modes are neutrally stable, the rapid growth of the disturbance 
emphasizes that this mechanism is not due to a conventional instability, but rather 
to  the continued liftup of fluid elements by the v-component ofthe initial disturbance 
and the subsequent generation of vertical vorticity. As the amplitude of v decays 
owing to  dispersion (see figure 6), this liftup will decrease, and at that  point the 
disturbance amplitude will not increase any further. 
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FIGURE 5. Linear initial-valuc. problem. Contours of streamwise perturbation velocity in the 
(5, %)-plane at y/6* = 1 .  Contour spacing : twice the maximum initial v-perturbation. 

The spanwise structure calculated by the linear theory is shown in figure 5 ,  which 
depicts a horizontal cut through the boundary layer at y/6* = 1.  The initial 
perturbation field also confirms the primary effect of the liftup of fluid elements by 
the initial velocity field. The low-speed-high-speed pattern in u exactly matches the 
areas where the initial v-field was positive and negative respectively. As the 
disturbance evolves, the central core of the disturbance intensifies as indicated in 
figure 4, but a new feature observed is the developing wave field seen at the edges 
of the disturbance. This is the dispersive part of the disturbance emerging, driven by 
the wave portion of the v-component. Since the transient portion of the disturbance 
is advected by the mean field, it cannot spread laterally. The wave part, however, 
does disperse in the spanwise direction, and thus, at the later times, i t  becomes 
visible at the edges of the disturbance field where the transient modes are not so 
dominant. 

The amplitude evolution of the disturbance is summarized in figure 6, which shows 
the maximum disturbance amplitude in the entire field as a function of time. From 
tU/S* = 0 to about 40, the growth is linear and this growth is due to the initial liftup 
of fluid elements by the vertical velocity. For larger times, v decays as we would 
expect and, consequently, the growth in the horizontal velocities slows. The u- 
component growth never completely levels off since the v-component does not decay 
very fast and so a relatively long time is required for the liftup process to finish. As 
discussed earlier, the v-component should decay as l / t  in a frame of reference moving 
with the disturbance. Examination of the amplitude of v indicates that this decay 
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FIGURE 6. Linear initial-value problem. Maximum peak-to-peak amplitude of the perturbation 
velocities u. v and w as a function of time. 

rate is well reproduced by the present results. The reason for the uneven behaviour 
of the w-component at large times is unclear, although the spreading of the 
disturbance might affect the solution a t  the later times through the contamination 
of adjacent disturbances via the periodic boundary conditions. 

The dominant effect of the three-dimensional terms on the disturbance is 
confirmed by considering solely the contribution to  the streamwise perturbation 
velocity by the vertical vorticity. Equation (13) indicates that the 13, component is 
directly coupled to the vertical velocity through continuity, and so we would expect 
that its contribution would quickly become negligible, since figure 6 indicates that 
the amplitude of v decays quite quickly. Indeed, if one sets u1 = 0 and performs the 
inverse Fourier transform to see the velocity field due to the vertical vorticity a t  
tU/8* = 75, one finds that i t  is almost indistinguishable from the full velocity field 
shown in figure 5. This agrees very well with a similar result by Henningson (1988) 
for piecewise linear plane Poiseuille flow. 

3. Experimental results 
3.1. Experimental set-up 

The experiments described were conducted in the Turbulence Research Laboratory 
in the department of Aeronautics and Astronautics at MIT. The details of the wind 
tunnel and the flat plate may be found in Mangus (1984), but we shall outline the 
pertinent features here. The wind tunnel is a closed-loop type with a test section 
6.1 m long, 1.22 m high and 0.6 m wide. The flate plate, made from aluminium, is 
12.7 mm thick and is mounted vertically, 10 cm from one of the tunnel sidewalls. The 
plate extends the entire length of the test section and to within 10 cm of both the 
tunnel floor and ceiling. The 10cm gaps are covered by perforated metal sheets 
behind which are ducts for suction to control the growth of the boundary layers that 
grow in the corners of the test section. The corner flows grow substantially further 
downstream, and contaminate the boundary layer on the flat plate at large 
downstream distances. For the present experiments the corner contamination was 



A localized disturbance in a laminar boundary hyer .  Part 1 58 1 

not a problem and the suction control was not used. A tapered leading edge with a 
rounded tip is attached to  the front of the plate. The coordinate system and velocity 
notation is the same as that used in the numerical work discussed earlier. 

The flow measurements were made using constant- temperature hot-wire anemo- 
metry. The hot-wire probes used, both for single-wire and two-wire measurements, 
were constructed in-house and typically had dimensions of less than 0.5mm in 
length. 10% Pt-Rh wire, 1.27 pm in diameter, was used for the sensing wire, giving 
a typical length-to-diameter ratio greater than 300. The probes were operated at a 
resistive overheat of 30 YO. The anemometer circuits used were also built in-house. 
For measuring the u- and v-components of velocity, a standard x -probe was built, 
having a box size of 0.4 mm while u and w were measured using a v-probe (a dual- 
wire probe in which the hot wires are arranged in the horizontal plane in a swept- 
back manner, approximately 45’ to the oncoming flow). 

The data was acquired using a Phoenix Data A/D system connected to a PDP- 
11/55 computer, which also controlled the probe positioning, timing, and all other 
aspects of the experiment. Subsequent data processing and graphics were performed 
on a MicroVax 11. The hot-wire probe was mounted on a traversing mechanism with 
four degrees of freedom : x, y, z and one rotational axis for dual-wire calibration. 

All hot-wire calibration was performed directly by the computer. No linearizers 
or signal conditioners were used. For single-probe measurements, the wire was 
calibrated by fitting seven calibration points to a cubic polynomial. For dual-wire 
measurements (both x -wires for measuring u and v, and v-wires for measuring u and 
w) a look-up-table procedure was used. This method, based on one described in 
Lueptow, Breuer & Haritonidis (1988), generates a look-up table from the calibration 
data (taken a t  seven velocities and nine angles) and uses bi-linear interpolation to 
calculate the two components of velocity from a pair of raw hot-wire voltages E l ,  E,. 
Initial versions of the calibration procedure used the hot-wire voltages directly as the 
variables for a Cartesian look-up table, but for these results an improved procedure 
(Gresko 1988) was used. This method converts E,  and E ,  into polar coordinates T ,  0 
and thus takes advantage of the fan-like shape of the raw calibration data and allows 
for a more efficient use of the table and a more accurate calibration. In  all cases, the 
error in the probe calibration (u,,,,, - uaCtual)/uactua, was less than 0.5 YO in both u and 
v (or w). During the actual data acquisition, the hot-wire linearization was carried 
out by an assembly language routine on the PDP-11/55. This allowed for very fast 
conversion of the raw voltages to velocities, speeding up the data collection 
considerably. The calibration was checked frequently for drift to ensure that it was 
still valid, and provided that the tunnel and electronic equipment had been operating 
for some time and had achieved thermal equilibrium, the calibration typically 
remained accurate for several hours. 

The form of the initial disturbance was of considerable importance. It was 
desirable to generate a simple, repeatable perturbation that contained the vital 
ingredient for the transient growth to be observed (localized initial vertical velocity). 
Simplicity was desired, both to allow a simple analytical representation of the 
disturbance in the calculations, and to enable the study of the three-dimensional 
effects with a minimum of other distracting phenomena. In their study of ‘incipient 
spots’, Amini & Lespinard (1982) used an air jet introduced through a 1 mm hole in 
the wall and driven by the action of an audio speaker. The disadvantage of this type 
of disturbances is that it is very small and concentrated. The small spanwise 
dimension of the disturbance makes the detailed measurement of its structure 
somewhat difficult, and it is desirable to generate a disturbance with a larger 
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spanwise dimension. Another problem is that the positive disturbance - generated by 
an upward motion of the speaker diaphragm which pushes air up through the hole 
- is completely different from the negative disturbance - generated by downward 
motion of the diaphragm which sucks air down through the hole. This difference 
between the two exists because the upward motion of the speaker results in a jet of 
air injected into the boundary layer, while the downward motion of the speaker 
creates a near-uniform sink flow from the boundary layer and down through the hole. 
For the experiments presented here, i t  was desirable to be able to produce a 
repeatable disturbance with a high degree of control over the amplitude and also to 
be able to produce disturbances identical in amplitude and structure, but with 
opposite sign. This latter requirement enables us to examine the effects of 
nonlinearity by comparing equal and opposite disturbances. 

The disturbance generator used was a rectangular membrane with rounded edges, 
9 mm by 17 mm, mounted flush with the wall a t  a distance of 0.76 m from the leading 
edge of the plate. The membrane was embedded into a circular plug and positioned 
so that the long dimension of the membrane was perpendicular to the direction of 
flow. A cavity below the membrane, approximately 3 mm deep, was connected 
through a three-port, solenoid-controlled valve to either a high- or a low-pressure 
source. When idle, the valve connected the cavity to the ambient pressure and the 
membrane lay flush with the wall. By activating the valve and exposing the 
membrane to the high-pressure source, the membrane deformed upwards, forming a 
small bump on the surface of the plate. Releasing the valve connected the cavity to 
the ambient pressure and allowed the membrane to return to its equilibrium position. 
The net effect was to produce a short, localized updown motion a t  the wall. 
Similarly, by connecting the membrane to a low-pressure source, the membrane 
moved down when the valve was activated and a down-up wall motion could be 
achieved, producing the same disturbance but with opposite sign (this will be 
demonstrated in 93.5.3). The electric pulse to the solenoid-controlled valve could be 
varied so as to alter the duration of the wall motion. The shortest cycle time 
(governed by the physical response time of the valve) was found to be 4 ms, and this 
was achieved by operating the valve at 4 0 V  (instead of the rated 12V) in 
conjunction with a 200 Cl dropping resistor. 

3.2. Mean JEow characteristics 
Extensive measurements were made to determine the quality of the mean flow in the 
test section. Two quantities were of special interest : the uniformity of the boundary 
layer across the span of the flat plate, and the extent to which the flow conformed 
to a Blasius boundary layer. The spanwise uniformity of the flow was characterized 
by measuring the displacement thickness (S*) a t  1 cm intervals, from + 40 to -40 cm, 
and at different x-locations. Initially, large and concentrated peaks in S* were 
discovered and it was found that the location of these peaks corresponded to the 
location of seams in the screens in the settling chamber of the wind tunnel. The peaks 
in 6* remained confined to a very small spanwise extent (< 1 cm) as far as 3 m 
downstream from the leading edge, and were accompanied by increased streamwise 
velocity fluctuation levels within the boundary layer. The last of four settling 
chamber screens was replaced, which removed the largest peaks, but some localized 
variations still persisted and despite extensive efforts, the cause of these peaks has 
yet to be determined. At x = 1 m, the variation of 6* is typically confined to within 
5% of its mean value, although a t  its worst point ( x  = - 12 em), b* rises 10% above 
the average value. One possible cause of these non-uniformities is that the seams of 
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5 0  0.76 mm 
ucc 6.0 m/s 
8* 2.4 mm 
8, 0.9 mm 
80.99 6.9 mm 
Re, 300 000 
Re,. 950 

TABLE 1. Flow parameters a t  the location of the disturbance generator for the experimental 
results (based on the Blasius solution for the boundary layer) 

the screen created a wake with localized vorticity which then impinged on the plate 
a t  the leading edge and was stretched out in the streamwise direction. However, this 
does not explain the peaks present after the new screen was in place. An alternative 
explanation is that potential fluctuations from the boundary layer on the contraction 
wall (which was measured to be turbulent and of varying thickness across the span), 
were causing localized disturbances on the flat plate. 

Despite these mean flow aberrations, the effect of the spanwise variations was not 
found to be serious. The variations in the base flow are not symmetrical about the 
centreline, and thus any effect they may have had on the measurements should have 
been detectable in strong asymmetric features in the measurements. No such 
deviations were observed in any of the experiments, indicating that the mean flow 
variations did not affect the measurements in any detectable manner. 

Measurements of the mean velocity profile a t  different spanwise and streamwise 
locations showed that the flow conformed to the Blasius solution, but that slight 
adjustments had to be made to  the virtual origin, xv,  of the flow in order to obtain 
collapse of the data in the Blasius variables. More details concerning these 
measurements may be found in Breuer, Haritonidis & Landahl (1989) and Cohen, 
Breuer & Haritonidis (1990). The measurement of the mean flow was recently 
repeated in its entirety and it was determined that the existence of the virtual origin, 
which increased with downstream distance, was the result of a very slight positive 
pressure gradient. By normalizing the measured mean velocity profiles with solutions 
of the FalknerScan equation, using a free-stream velocity given by U,(z) = 
U0(x/20)0~0035, an excellent collapse of the data was achieved a t  all streamwise 
stations. It should be noted that this value of the exponent for the free-stream 
velocity corresponds to an increase in U ,  of less than 0.4% over the streamwise 
range of the experiments, a change so small that the Blasius assumption is most 
probably still valid. However, the possible effects of this slight positlive pressure 
gradient will be discussed in later sections. 

3.3. Flow parameters 
Most of the experiments were conducted a t  a free-stream velocity, U,, of 6 m/s. As 
mentioned above, the disturbance generator was located a t  xo = 0.76 m. Assuming 
that the mean flow can be described locally by the Blasius solution for the boundary 
layer, we can calculate the relevant flow parameters at xo = 0.76 m. These are given 
in table 1. 

3.4. Experimental procedure 
The structure of the disturbed flow, created by the membrane movement, was 
mapped out by positioning the hot-wire probe a t  several ( x ,  y , z )  positions 
downstream of the membrane and measuring the velocity trace as the disturbance 
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advected past the probe. The measurement sequence was initiated by a pulse from 
the computer which triggered the membrane motion. After waiting a preset time, the 
velocity record, consisting of 512 points, was digitized a t  a rate sufficient to capture 
the disturbance signal (typically about 300 ps). By measuring a t  several locations, a 
complete map of the structure could be assembled. Two kinds of flow maps were 
obtained by this procedure. By positioning the probe at z = 0 and a t  several y- 
locations through the boundary layer, a vertical slice through the disturbance a t  the 
centreline of the structure was obtained. Measurements were taken at 20 y-positions 
through the boundary layer spanning a vertical height of 56*. The vertical spacing 
was arranged according to a 1.5 power law so that there was increased resolution near 
the wall. 

The second mapping that was performed determined the spanwise structure of the 
disturbance. This was measured with a v-shaped hot-wire probe, measuring both u 
and w a t  a fixed height in the boundary layer. The probe was positioned a t  a height 
where u / U ,  = 0.3, which corresponds to y/6* GZ 0.5. The disturbance was mapped 
out in the (t,z)-plane by taking measurements a t  33 spanwise locations, evenly 
spaced at  16* intervals and spanning z = & 166*. Both of these flow mappings 
produced similar plots to  those shown in the previous numerical results with the 
exception that t ,  instead of x, is depicted on the horizontal axis. From these two kinds 
of mapping, a good representation of the complete structure could be inferred. These 
measurements were carried out a t  several different x-locations, starting a t  Ax/&* = 
8.5 downstream from the membrane location and thereafter a t  regular intervals of 
approximately 8.56". 

At each (2, y, z )  position, 100 realizations of the disturbance's passage were 
measured and an ensemble average was then calculated. I n  all cases, the disturbance 
velocity was extremely coherent, and so the ensemble average is a very faithful 
representation of an individual realization. The averaging process was beneficial in 
reducing the random background noise. This was especially important a t  the edges 
of the disturbance, where the perturbation velocities were very weak and of the same 
order as the random background noise and the averaging was necessary to pick out 
the coherent signal from the incoherent fluctuations present in the flow. 

All three components of velocity were initially measured but several problems with 
the measurement of the v-component were encountered and these results had to be 
discarded. The problems in measuring v were associated with the contamination of 
the x -probe data by the spanwise velocity component of the disturbance and the 
strong spanwise shear layers in the streamwise velocity, aulaz. Since u and w are of 
similar order, while v is an order of magnitude smaller, both the spanwise velocity 
and the strong spanwise gradients in u contributed to the creation of 'phantom ' v- 
signals which were of the same order as the real v that  we were attempting to 
measure. This contamination was evident, for example, when the measured v was 
observed to be antisymmetric in z when it should have been symmetric (the u- 
component is symmetric and the w-component is antisymmetric). The mechanism for 
the contamination of the v-signal was tested by subjecting the x -probe to a steady 
cross-flow and observing the measured u- and v-components. While the u-component 
remained accurate, the v-component (which should have remained a t  zero) indicated 
a small 'phantom' value. Similarly, by rotating the x -probe and placing it in 
boundary layer so that it measured the u- and w-components, it was found that a 
phantom spanwise velocity was detected, induced by the gradient in the streamwise 
velocity. Similar problems were noticed by Gresko (1988) using an x -probe in a 
turbulent boundary layer. 
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FIGURE 7. Experimental data. Contours of streamwise perturbation velocity in the ( t ,  y)-plane 
a t  z = 0. Contour spacing: 0.0025Um. 

3.5. Results and discussion 

3.5.1. Streamwise disturbance velocities 
Contours of the streamwise velocity perturbations in the ( t ,  y)-plane at  z = 0 are 

shown in figure 7(a-c) .  These are representative of measurements made at several 
downstream stations. In this figure, as before, the disturbance is plotted with the 
local mean velocity subtracted. Time is plotted along the horizontal axis and so the 
structure of the disturbance may be inferred via a frozen-flow assumption. The 
validity of this assumption depends on the slow development of the disturbance in 
relation to the speed at  which it advects past the hot-wire probe. As figure 7 shows, 
the disturbance does not change very much from station to station, indicating that 
this assumption is valid. The structure of the streamwise disturbance is very similar 
to the structure calculated by the linear theory. The liftup of low-speed fluid by the 
membrane's upward motion and the subsequent pulldown of high-speed fluid by the 
membrane's return motion creates two adjoining regions of locally decelerated and 
accelerated fluid. These two patches of fluid are advected by the local mean velocity 
which quickly results in the formation of the inclined shear layer: even at the first 
measuring station (AXIS* = 8.5) the tilting of the shear layer is evident. At successive 
downstream stations, the disturbance tilts with an increasingly acute angle of 
inclination to the wall, intensifying the shear layer accordingly. By AXIS* = 42, the 
inclination angle and the thickness of the shear layer seem to have reached an 
equilibrium level at which point the forcing by the mean shear might be offset by 
viscous forces, which set a limit on the intensity of the shear layer. After decreasing 
slightly from a maximum of 3 YO of U ,  at the first measuring station, the disturbance 
amplitude remains relatively constant at about 2 %  of U ,  as the structure moves 
downstream. 
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Although the calculations of 9 2 were linear and inviscid, the qualitative agreement 
between those results and the measurements is nevertheless quite good. The 
formation of the inclined shear layer and the confinement of the structure to the 
region of mean shear both indicate that the mechanism governing the initial 
evolution of the viscous disturbance is the same as its inviscid counterpart, namely 
the generation of vertical vorticity by the three-dimensional liftup effect. In  the 
inviscid calculations, the streamwise disturbance amplitude increased with time as a 
result of the continued liftup of fluid by the vertical perturbation velocity. Only 
when v decayed did the u-fluctuations level off to a constant amplitude. Since the 
measured u does not exhibit any continued growth in amplitude, we can assume that 
the initial vertical displacement velocity due to the membrane motion must decay 
quite rapidly so that the liftup process ends very soon after the initial generation 
point and the disturbance reaches a maximum amplitude after a very short time. 
Despite its constant amplitude, however, the disturbance continues to grow as it 
advances downstream by virtue of its elongation. During this time its length increases 
linearly from about 256* a t  Ax/S* = 17 to about 406* a t  Ax/&* = 68. Thus, although 
the perturbation velocity remains constant, the energy of the disturbance 
nevertheless grows as the structure increases in size. This behaviour is also consistent 
with the inviscid results. Since the transient travels a t  the local mean velocity, we 
would expect that  the length of the disturbance will grow linearly with time. This 
‘growth by elongation ’ is precisely the algebraic instability discussed by Landahl 
(1980). 

However, the association between the viscous and the inviscid results should not 
be taken too far and there are significant differences between these results and the 
inviscid calculations. In  the viscous flow, the vertical vorticity modes are actually 
damped (Benney & Gustavsson 1981) and as the generation of vertical vorticity by 
the liftup process ends, the transient begins to slowly decay as the disturbance 
travels downstream. The residue of the disturbance is the contribution from the 
unstable Orr-Sommerfeld modes which form a slowly growing wave packet. This is 
illustrated in figure 8 which shows the u-component of velocity measured on the 
centreline a t  several x-locations, ranging from a station immediately behind the 
membrane to a station far downstream a t  Ax/&* = 300. As before, the pattern 
behind the membrane reflects the motion of the membrane. The up-down motion 
creates a low-speed-high-speed velocity perturbation in the streamwise velocity 
signal. For this case, the initial perturbation amplitude was chosen to be quite small, 
and the peak-to-peak amplitude of the first u-signal is only 0.8% of U,. This 
decreased amplitude (compared with figure 7) enables us to distinguish more clearly 
between the advective and wave parts of the disturbance and it lessens the weak 
nonlinear effects that  were observed (it does not completely eliminate them). 
However, it also means that the disturbance becomes more difficult to measure 
experimentally because of its very low amplitude. As the disturbance moves 
downstream, the transient stretches and slowly decays, and a t  an x-location of about 
Ax/S* = 200 the disturbance is comprised solely of a wave packet. By measuring the 
peak- to-peak amplitude of the disturbance at these x-locations, i t  was found that the 
growth of the wave packet is exponential, with a growth rate of about 0.005. This is 
in reasonable agreement with the theoretically predicted value of about 0.01 
(Jordinson 1970) for a zero-pressure-gradient boundary layer. The lower growth 
rates of the Tollmien-Schlichting waves may be partially accounted for by taking 
into account the observed slight pressure gradient in the mean flow. If one solves the 
Orr-Sommerfeld equation, using the appropriate FalknerScan profile, one finds 
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FIGURE 8. Experimental data. Evolution of streamwise velocity at  2 = 0 and y/6* = 0.5 

showing transition from transient-dominated to wave-packet regimes. 

that  the maximum spatial growth rate decreases from the Blasius value of 0.010 to 
a value of 0.009, in somewhat better agreement with the present results. 

By following distinctive features we can estimate propagation speeds a t  the 
different stages of the evolution of the disturbance. The density of measurements in 
the downstream direction, as well as the degree to which these features lie on a 
straight line, yield accurate values for these propagation speeds, and even if the 
absolute values are susceptible to small errors, the relative differences in speed are 
still valid. Close to the point of generation, the trough in the disturbance velocity was 
found to  travel a t  a speed of 0.38Um. This is somewhat high for the transient part, 
given that the local fluid velocity at this height in the boundary layer is 0.30Um. 
However, in the wave-packet stage, the wave speed was found to be 0.34Um while the 
dominant frequency was found to be 0.08, both in very good agreement with the 
predicted values of the most-amplified TollmienSchlichting wave for the appro- 
priate Falkner-Scan boundary layer a t  that Reynolds number, which were 
calculated to be 0.33Um and 0.081 respectively. The leading and trailing edges of the 
wave packet were found to propagate a t  0.37Um and 0.45Um respectively, in 
excellent agreement with the envelope speeds measured by Gaster & Grant (1975). 

The spanwise structure of the disturbance is shown in figure 9. The structure of the 
disturbed flow field immediately behind the disturbance generator again reflects the 
motion of the membrane and is typical of the advective description of the localized 
disturbance. The regions of low-speed fluid, followed by high-speed fluid are 
consequences of the up-down motion of the membrane pushing up and pulling down 
fluid particles in the boundary layer. Small lobes are also seen on either side of the 
central perturbations. These too are natural consequences of the membrane’s initial 
movement. The positive v caused by the membrane’s upward motion is accompanied 
by a weaker negative v on either side, necessitated by continuity. In an identical 
manner to the central motion, this downward motion brings with it high-speed fluid 
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FIGURE 9. Experimental data. Contours of streamwise velocity in the ( t ,  2)-plane at  y/6* = 0.5. 
Contour spacing: 0.0005Um. 

from the upper flow, resulting in a small region of locally accelerated fluid. That the 
initial flow pattern in figure 9(a) so closely matches the results from the inviscid 
calculations of the previous section (figure 5a)  again indicates that  the analytic 
initial conditions chosen were a good approximation of the disturbance actually 
produced by the membrane. 

As we progress downstream, the evolution of the disturbance is observed in figure 
9 (a-c). By AXIS* = 39 the distinction between the advective and the dispersive parts 
of the disturbance becomes clear. As was seen in the inviscid calculations, the central 
core of the structure forms the advective part while the wave structure becomes more 
apparent a t  the edges of the disturbance and at later x-locations. The dispersive part 
begins to grow, forming the swept-back wave packet familiar from the results of 
Gaster (1975) and Gaster & Grant (1975). These waves have a typical frequency 
which agrees well with the frequency of the most unstable mode at that local 
Reynolds number. Further downstream, the transient part continues to decay, while 
the accompanying waves grow and disperse as they propagate downstream. Since the 
membrane is symmetric about the x-axis, the disturbance should also show reflective 
symmetry. This symmetry is initially very good, but there are some differences in the 
amplitude of the structure on either side of the plane of symmetry. These differences 
are particularly noticeable in figure 9 ( b ) .  However, since the measurements a t  
subsequent x-locations seem to recover their symmetry, i t  is safe to assume that the 
actual disturbance does maintain symmetry fairly well, and that the apparent 
asymmetric features in figure 9 (b) are due to experimental inaccuracies. 



A localized disturbance in a laminar boundary layer. Part 1 589 

1 I 
0 60 120 180 240 300 

tU,/6* 

FIGURE 10. Experimental data. Contours of spanwise velocity a t  y/8* = 0.5. 
Contour spacing : O.0005Um. 

One comment should be made concerning the long ‘tail ’ behind the disturbance 
seen in figure 9(a) .  This tail is not a spurious consequence of experimental noise, but 
rather can be explained as being part of the transient disturbance. Since the 
advective part travels with the local mean velocity, there is a part of the disturbance, 
next to the wall, which does not propagate at all but rather remains a t  the point of 
generation. Thus, as the disturbance travels downstream, it is in fact ‘pinned’ to the 
wall at x = xo, and stretched out from that point. The tail that figure 9 ( a )  shows is 
the evidence of this pinning. After the main disturbance has passed by, the slow- 
moving and weak tail still remains until it is dissipated by viscosity. A t  the 
subsequent downstream x-locations, we should still be able to see the tail, but 
because of its very low amplitude it has already dissipated and is no longer visible. 

3.5.2. Xpanwise disturbance velocities 

The structure of the spanwise velocity component is shown in figure 10. As with 
the streamwise perturbation, the structure of the w-component at Ax/&* = 8 
strongly reflects the initial generation mechanism and the consequences of the liftup 
effect. As discussed above, the upward motion of the membrane generates a positive 
v-velocity and continuity dictates that  accompanying this must be a downward 
motion on either side of the central core. This pattern implies that  there must be an 
accompanying spanwise flow which converges towards the centreline at the bottom 
of the disturbance structure and diverges from the centreline higher up in the 
boundary layer. At y/S* = 0.5 (where the measurements were taken), which is low in 



590 

20 - (4 ( x - x , ) / ~ *  = 8 - 

10 - 
Z ..._. 

...- ........................................................ . ..... .... 
- ...-.. __.. - .__...___.___.. . .._______.. 6* 0 -  i 

-. .. .,' ._._______.___....__.......... -.. 

-10 - 

-20 - .~. ..:::.. 

20 - (b) 0 0 39 - 

10 - 
2 

:. - ..._ _.... 
- 
6* O -  

-10 - oy-~: 
... 

-20 - 

K .  S. Breuer and J .  H .  Haritonidis 

the boundary layer, a positive streamwise perturbation should therefore be 
accompanied by a converging flow and, conversely, the downward membrane 
motion, resulting in a positive streamwise perturbation should be accompanied by a 
diverging spanwise flow. Indeed, this is what is observed in figure l O ( a ) .  As with the 
streamwise velocity perturbations, the w-component changes as the disturbance 
progresses downstream from the compact format of the advective modes, to the 
swept-back and more extensive pattern of the wave packet. The typical frequency 
of the w-perturbation also changes from one associated with the membrane size to 
the lower frequency associated with linear instability waves. It is interesting to note 
that although the linear theory predicts that both horizontal velocities will reflect 
the liftup effect, only the streamwise component exhibits the dramatic shear-layer 
structure while the spanwise component has a much more smooth appearance. The 
antisymmetry of the w-component of velocity is expected for a disturbance which is 
symmetrical in the u- and w-components with respect to its centreline and the 
experimental results show this antisymmetry with remarkable accuracy. 

3.5.3. Nonlinear effects 
It has already been mentioned that the disturbance observed in figure 7 exhibited 

some weak nonlinear effects that resulted in the constant amplitude of the 
streamwise perturbation velocity. In  addition to this, figure 9 (c) shows some 
nonlinear effects in the appearance of the iwo peaks on either side of the centreline, 
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qualitatively similar to  those observed in the late stages of the evolution of the linear 
wave packet by Gaster & Grant (1975) who also speculated that this was probably 
due to nonlinear effects. I n  order to examine these in some more detail the 
experiments were repeated, creating the same initial disturbance as before, with the 
same initial amplitude, but with opposite sign. Physically, this was accomplished by 
operating the membrane with a vacuum source in place of the usual pressure source. 
The structure of this ‘negative’ disturbance is seen in figure 11, which shows 
contours of the streamwise perturbation velocity plotted in the ( t ,  z)-plane. The 
initial velocity perturbations are almost identical in structure and amplitude but 
with opposite sign to those in figure 9. The similarity includes the initial structure of 
the disturbance, the decay of the advective modes, the growth of the wave modes, 
and the weak tail pinned to the wall behind the disturbance. However, close 
examination of the later x-locations reveals that, for both signs of initial disturbance, 
a t  Ax/S* = 68 the positive perturbations have split into two peaks off the centreline 
while the negative perturbations remain centred a t  z = 0. These nonlinear effects are 
only seen in the streamwise velocity component, and no measurable differences were 
apparent in the w disturbance velocity. 

The weak nonlinearity is again evident in figure 12, in which the centreline 
streamwise velocity perturbation seen in figure 8 (created by the normal updown 
membrane motion) is replotted. Superposed on top of this, plotted with a dotted line, 
is the centreline streamwise velocity perturbation of the negative disturbance 
(created by a down-up membrane motion), and inverted so as to highlight the 
similarities and differences between the two disturbances. Initially, in agreement 
with the contour plots of figures 9 and 11, the two disturbances are identical in 
structure, but with opposite sign. However, by AXIS* = 50, differences between the 
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two have appeared, and the effect of the nonlinearity is apparent. As the transient 
decays, and the wave modes establish themselves as the remnant of the initial 
disturbance, the differences disappear and by Ax/S* = 252 the wave packets are 
again identical and opposite. The nature of the nonlinearity is clearly not strong and 
does not have a global effect on the disturbance since the linearly unstable 
wavenumbers which remain after the transient has decayed are not affected by the 
nonlinear action, which was confined to the damped modes of the transient part of 
the disturbance. It should be noted that the observed nonlinear effects may be 
connected to variations in the mean flow which might ‘trigger ’ the nonlinearity or 
provide some mechanism for scale selection. However, since the variations in S* are 
not symmetric about the centreline, and the observed nonlinearities are observed to 
be symmetric, the effect of the mean flow is thought to be minimal. 

4. Conclusions 
The importance of three-dimensionality in the evolution of a disturbance has long 

been acknowledged in the context of secondary instabilities and the later stages of 
transition. However, in this work we have shown how these mechanisms are not 
confined to the nonlinear development of the flow, but rather they are linear 
interactions between the vertical velocity in the disturbance, and mean shear of the 
background flow and as such may be seen a t  any stage of the transition process. The 
presence of three-dimensionality in the initial disturbance allows the generation of 
vertical vorticity which creates the large-amplitude transient, travelling at  the local 
mean velocity, resulting in the inclined shear layer. The agreement between the 
results of inviscid calculations (in which all modes are either neutrally stable or 
damped) and measurements in an unstable boundary layer serve to  emphasize that 
this effect is not related to a traditional Tollmien-Schlichting instability mechanism. 
This effect is quite distinct from the wave packet that  also accompanies the 
disturbance, which is characterized by a substantially lower amplitude and by its 
vertical coherence and dispersive nature. 

The structures that have been seen here, despite their inherent linear nature, 
strongly resemble the shear layers that  have been observed in studies of secondary 
instabilities (e.g. Klebanoff et aZ. 1962 ; Kovasznay et al. 1962). The resemblance is 
not by chance, since the present results distill the essential mechanisms that have 
been found to be important in the secondary instability studies. Herbert (1984) has 
found that the three-dimensional secondary instability which grows from a finite- 
amplitude two-dimensional Tollmien-Schlichting wave involves the excitation of the 
‘Squire modes’ - the same vertical vorticity modes that, in this case, are excited by 
the three-dimensional nature of the initial disturbance. Similarly, the vortex tilting 
and stretching mechanism described by Stuart (1965) and by Orszag & Patera (1983) 
can also be thought of in terms of the excitation of vertical vorticity. Both of these 
mechanisms are present in the localized disturbance, indicating that it is the 
introduction of three-dimensionality that produces these structures, not directly the 
amplitude of the perturbed flow. 

The present work has been limited to the understanding of the basic linear 
mechanisms, and thus the disturbances considered in the experiments were of low 
amplitude. Although the inviscid theory allows for the continued growth of the 
disturbance, viscosity acts to dissipate the transient so that, far downstream, all that 
remains is the slowly growing linear wave packet (in fact, by altering the structure 
of the initial perturbation, one can create disturbances with very different rates of 
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transient decay). However, it is easy to anticipate what will result if viscosity cannot 
act quickly enough to dissipate the shear-layer structure. At  a higher Reynolds 
number, or if the initial amplitude is high enough, the shear layer will be sufficiently 
strong and long lasting that it will not decay, but rather will itself become unstable 
to shear-layer instabilities and strong nonlinear effects leading to the rapid 
breakdown of the disturbance. This scenario is discussed in the accompanying paper 
(Breuer & Landahl 1990). 
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